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Chapter 0. A Few Preliminaries.

Course texts:

1. Linear Algebra, by S. Friedberg, A. Insel, L. Spence (latest edition). This will be
the main backup text to accompany the present Class Notes . Various assignments
will be taken from it.

2. Schaum’s Outline Series: Linear Algebra, by Seymour Lipschutz, for a review of
matrix algebra, row operations, and solution of linear systems (roughly the first
3-4 chapters). K is a field (see Appendix C of [F/I/S] text; read it). For us,
K = C, R, Q, and occasionally the finite field K = Zp = Z/pZ, for a prime p > 1.

Recall that the finite field Zp is modeled as S = {0, 1, 2, ..., p− 1}, interpreting a + b and
ab (mod p). For example: if p = 7 then

5⊕ 6 = 11 ≡ 4 (mod 7) and 506⊙ 17 ≡ 6 (mod 7).

Elements of Zp are the (mod p) congruence classes [k] = k + pZ = {ℓ : ℓ ≡ k (mod p)}.
Using this notation the operations in Zp take the form

[a]⊕ [b] = [a + b] [a]⊙ [b] = [ab] (add or multiply class representatives)

The system (Zp,⊕,⊙) is a finite number field with additive zero element [0] and multi-
plicative identity element [1]. All nonzero elements [k] ̸= [0] have multiplicative inverses
(reciprocals), but it may not be so easy to find the class [k]−1 = [ℓ], 0 < ℓ < p such that
[k] · [ℓ] = [1]. If p = 7 we have [3]−1 = [5] because 3 ⊙ 5 = 15 = 14 + 1 ≡ 1 (mod 7).
Notice that in Zp the sum [1]⊕ [1]⊕ ....⊕ [1] with p terms is equal to the zero element
[0].
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Notes c⃝F.P. Greenleaf 2014 LAI-f14-vsp.tex

Chapter I

Section I.1. Vector Spaces over a Field K

The objects of interest in this chapter will be vector spaces over arbitrary fields.

1.1 Definition. A vector space over a field K is a set V equipped with two operations
(+) and (·) from V × V → V and K× V → V having the following properties.

1. Axioms for (+):
Commutative Law: x + y = y + x
Associative Law: (x + y) + z = x + (y + z)
Zero Element: There exists an element “0” in V such that 0+v = v

for all v.
Additive Inverse: For every v ∈ V there is an element −v ∈ V, such

that v + (−v) = 0.

2. Axioms for (·):
Identity Law: 1 · v = v (1 = the identity in K)
Associative Law: (ab) · v = a · (b · v) for a, b ∈ K, v ∈ V
Distributive Law: a · (x + y) = (a · x) + (b · y)
Distributive Law: (a + b) · x = (a · x) + (b · x)

As a consequence,

1.2. Lemma. The zero element is unique: if 0, 0′ ∈ V are elements such that 0 + v = v
and 0′ + v = v, for all v ∈ V , then 0′ = 0.

Proof: 0 + 0′ = 0′ and 0 + 0′ = 0, so 0′ = 0. !

1.3. Lemma. The additive inverse is unique. That is, given v ∈ V there is just one
element u ∈ V such that u + v = 0.

Proof: Suppose v ∈ V and we are given u and u′ with u + v = 0 and u′ + v = 0. Look
at the combination u + v + u′; by associativity we get

u′ = 0 + u′ = (u + v) + u′ = u + (v + u′) = u + 0 = u ,

so that u′ = u. !

1.4. Exercise. From the axioms and previous results prove:

(i) 0 · v = 0V (ii) λ · 0V = 0V (iii) λ · v = v and v ̸= 0V ⇒ λ = 1.

1.5. Exercise. Prove that −v = (−1) · v where −1 is the negative of 1 ∈ K.
Hint: 1 + (−1) = 0 in K and 0 · v = 0V . Remember: “− v” is the unique element that
added to v is 0V ; prove that (−1) · v has this property and conclude by uniqueness of
additive inverse.

1.6. Exercise. Prove that −(−v) = v, for all v ∈ V .
Hint: Same as the previous exercise.

1.7. Exercise (Cancellation Laws). If a+v = a+w for a, v, w ∈ V prove that v = w.
Then use this to prove

(i) λ · v = 0V and v ̸= 0V implies that λ = 0 in K

(ii) λ · v = v and v ̸= 0V implies λ = 1.

1.8. Example. “Coordinate space” over the field K consists of all ordered n-tuples
Kn = {x = (x1, ..., xn) : xk ∈ K}, equipped with the usual (+) and (·) operations:

1



(i) (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn)

(ii) λ · (x1, ..., xn) = (λ · xn, ..., λ · xn) for λ ∈ K. !

1.9. Exercise. Explain why (+) in R2 is described geometrically by the “parallelogram
law” for vector addition shown in Figure 1.1.

Figure 1.1. The Parallelogram Law for vector addition, illustrated in R2.

1.10. Example (Matrix Space). The space M(n × m, K) of n × m matrices with
entries in K becomes a vector space when equipped with the operations

Addition Operation: (A + B)ij = Aij + Bij

Scaling Operation: (λ · A)ij = λAij

The space of square matrices, with m = n, is denoted M(n, K).
Notation: Matrix entry Aij is the one in the ith row and jth column. The pair (i, j) is
referred to as its “address.” !

Figure 1.2. The entry in a matrix array with “address” (i, j) is the one in Row i and Column j.

There is also a matrix multiplication that makes M(n, K) an associative algebra with
identity, but the matrix product AB can be defined more generally for non-square ma-
trices as long as they are “compatible,” with the number of columns in A equal to the
number of rows in B. Thus if A is m × q and B is q × n we get an m × n matrix AB
with entries

(AB)ij =
q
∑

k=1

AikBkj

The algebra M(n, K) of square matrices is not commutative unless n = 1. !

1.11. Example (Polynomial Ring K[x]). The set K[x] consists of all finite “formal
sums” a0 + a1x + ... + anxn + ... =

∑

k≥0 akxk with ai ∈ K, and ai = 0 for all but
a finite number of indices. These sums can have arbitrary length. They include the
“constant polynomials” which have form c · 1- with c ∈ K, where 1- is the particular
constant polynomial 1+0·x+0·x2 + . . .; the zero polynomial 0·1- is written as “0”, which
might get confusing.

The algebraic operations in K[x] are

2



1. Addition: (
∑

k≥0 akxk) + (
∑

k≥0 bkxk) =
∑

k≥0(ak + bk)xk

2. Scaling: λ · (
∑

k≥0 akxk) =
∑

k≥0(λak)xk.

There is also a multiplication operation, obtained by multiplying terms in the formal
sums and gathering together those of the same degree

3. Product: (
∑

k≥0

akxk)× (
∑

l≥0

blx
l) =

∑

k,l≥0

akbl x
k+l =

∑

r≥0

(
∑

k,l≥0,k+l=r

akbl) · xr

(the sum being finite for each r). This makes K[x] into a commutative associative algebra
over K with 1- as its multiplicative identity.

All information about a polynomial resides in the symbol string (a0, a1, a2, ...) of
coefficients, and the algebraic operations on K[x] can be performed as operations on
symbol strings; the zero polynomial is represented by (0, 0, ...), the identity by 1- =
(1, 0, ..., 0), and x by x = (0, 1, 0, ....), etc. !

1.12. Exercise. If f(x) = 3 + 3x + x2 and g(x) = 4x2 − 2x3 + x5, compute the sum
f + g and product f · g.

The degree deg(f) of f =
∑

k≥0 akxk is n if an ̸= 0 and ak = 0 for all k > n. The degree
of a constant polynomial c1- is zero, except that no “degree” can be assigned to the zero
polynomial 0. (For various reasons, the only possible assignment would be “−∞”).

1.13. Exercise. If f, g ̸= 0 in K[x] prove that fg ̸= 0 and deg(fg) = deg(f) + deg(g).

1.14. Exercise. If f, g ̸= 0 in K[x], what (if anything) can you say about deg(f + g)?

1.15. Example (Polynomials in Several Unknowns). The polynomial ring K[x] =
K[x1, ..., xn] is handled using very efficient “multi-index notation.” A multi-index is an
element α = (α1, . . . αn) of the Cartesian product set Zn

+ = Z+ × ... × Z+ (n factors).
Each multi-index determines a monomial xα = xα1

1 · . . . · xαn

n , in which we interpret
x0

k = 1. Elements of K[x1, . . . , xn] are finite formal linear combinations of monomials

f(x1, . . . , xn) =
∑

α∈Zn
+

cαxα (cα ∈ K)

The monomial x(0,...,0) is the constant polynomial 1- in K[x1, ..., xn]. With these ideas in
mind,

1. The total degree of a multi-index is |α| = α1 + . . . + αn and the degree of the
corresponding monomial is deg(xα) = |α|. Note that many monomials can have
same total degree, for example x2y and xy2.

2. The degree of a polynomial f ∈ K[x] is

deg(f) = max{ |α| : cα ̸= 0 }

Nonzero constant polynomials c1- have degree zero: if f is the zero polynomial (all
coefficients cα = 0) deg(f) cannot be defined. The generators fk(x) = xk of the
polynomial ring all have degree 1.

The following operations make V = K[x] a vector space and a commutative associative
algebra with identity 1- = x(0,...,0).

1. Sum: f + g =
∑

α(aα + bα)xα

2. Scaling: λ · f =
∑

α(λaα)xα

3



3. Product Operation:

f · g = (
∑

α

aαxα) · (
∑

β

bβxβ)

=
∑

α,β∈Zn
+

aαbβxα+β

=
∑

γ∈Zn
+

(
∑

α+β=γ

aα ·bβ ) · xγ

where we define a “sum of exponents” to be α + β = (α1 + β1, ..., αn + βn).

As an example, the monomials of degree 2 in K[x1, x2, x3] are

multi-index monomial

(0, 0, 2) x2
3

(0, 1, 1) x2x3

(0, 2, 0) x2
2

(1, 0, 1) x1x3

(1, 1, 0) x1x2

(2, 0, 0) x2
1

Here we have lined up the monomials in “lexicographic”or “dictionary” order (taking
A = 0, B = 1, C = 2, . . .), which is a useful way to manage them. This is a strict linear
ordering of monomials; they are only partially ordered by their “total degree” deg(xα) =
|α|. The system K[x1, . . . , xn] is a commutative associative algebra with identity element
1-. Its properties are quite a bit more complicated than those of polynomials K[x] in one
unknown, but they do share two crucial algebraic properties. !

1.16. Exercise. (Hard, but try it) If f, g ̸= 0 in K[x1, ..., xn] prove that

1. Degree Formula: deg(f · g) = deg(f) + deg(g) for all f, g ̸= 0 in K[xi, . . . , xn].

2. No Zero Divisors: f, g ̸= 0 in K[x1, . . . , xn] ⇒ f ·g ̸= 0. This implies we can
perform “cancellation” – if f ̸= 0 and f ·h1 = f ·h2 then h1 = h2.

Hint: Try it first for n = 1. For n = 2 try lexicographic ordering of monomials in
K[x, y].
Note: The maximum possible degree for a nonzero monomial in the product fg is
obviously d = deg(f)+deg(g). The problem is that the coefficient cγ of such a monomial
will be a sum of products (

∑

α+β=γ aαbβ), and not a simple product as it is when there
is just one variable. Such sums could equal zero even if all terms are nonzero, so why
couldn’t these coefficients (sums) be zero for all monomials with the maximum possible
degree d, making deg(fg) < deg(f) + deg(g)? !

A more complete discussion of the Degree Formula for n ≥ 2, and especially its proof
using lexicographic ordering of monomials, is provided in Appendix A of this chapter.

1.17. Example (Function Spaces). If S is a set, C(S) = all scalar-valued functions
f : S → K become a vector space under the usual operations

(f + g)(x) = f(x) + g(x), (λ · f)(x) = λf(x), ∀x ∈ S

There is also a pointwise multiplication operation

(f · g)(x) = f(x) · g(x) ,
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which makes C(S) a commutative associative algebra over K with identity element
1-(x) = 1 for all x, and zero element 0(x) = 0, for x ∈ S. !

1.18. Example (Polynomial Functions vs Formal Sums). The polynomial func-
tions PK with values in K are the functions φf : K→ K of the form

φf (t) = [ f(x)|x=t ] =
∑

k≥0

ak tk (t ∈ K)

for some f ∈ K[x]. (Thus, φ(t) = sin(t) is not a polynomial function on K). Note
carefully that the elements of PK are functions while K[x] is made up of symbol strings
or formal sums. They are not the same thing, though there is a close relation between
them implemented by the surjective (=“onto”) mapping Φ : K[x]→ PK such that

Φf(t) =
∑

k≥0

ak tk (t ∈ K)

if f(x) =
∑

k≥0 akxk in K[x]. This surjective map is a homomorphism: it preserves, or
“intertwines,” the algebraic operations in K[x] and in the “target space” PK, so that

Φ(λ · f) = λ · Φ(f) Φ(f + g) = Φ(f) + Φ(g) Φ(f · g) = Φ(f) · Φ(g) !

1.19. Exercise. If K = R or C explain why Φ is a bijection, hence an “isomorphism”
between commutative associative algebras. In fact, prove that this is so for polynomials
over any infinite field K.
Hint: Φ is linear, hence being one-to-one is equivalent to saying that Φ(f) = 0⇒ f = 0
in K[x]. If f is nonzero in K[x] the corresponding polynomial function Φ(f) : K→ K can
take on the value zero at no more than n = deg(f) points – i.e. the number of roots in K

cannot exceed deg(f). Since R and C (and even Q) are infinite we cannot have Φ(f) ≡ 0
on these fields unless f is the zero polynomial. !

The finite fields Zp (p a prime) are widely used in number theory, cryptography, image
processing, etc. This one-to-one correspondence breaks down for these fields. For example
if K = Zp the nonzero polynomial f = xp − x has value zero for every choice of x ∈ Zp

and there are precisely p = deg(f) roots.
A theorem of Fermat says: if p is a prime then tp−1 = 1 for all nonzero t in Zp, but

then tp − t = t is zero at every t ∈ Zp and Φ(f) ≡ 0 (the zero function in PK).

1.20. Exercise. For p = 3, verify that t3 − t = 0 for the three elements t = [0], [1], [2]
in Z3. But the corresponding element of Z3[x] is f = x3 − x, whose symbol string
(0,−1, 0, 1, 0, 0, ...) differs from that of the zero polynomial in Z3[x].

I.2. Vector Subspaces
2.1. Definition. A nonempty subset W of a vector space V is a vector subspace if

1. W is closed under (+): W + W ⊆W , so w1, w2 ∈ W ⇒ w1 + w2 ∈W .

2. W is closed under (·): K · W ⊆W , so λ ∈ K, w ∈W ⇒ λ · w ∈ W .

The vector 0 then lies in W , for if w ∈ W then −w = (−1) · w is also in W and then
0 = w + (−w) ∈ W . Thus W becomes a vector space over K in its own right under the
(+) and (·) operations applied to elements of W .

Subspaces of V include the trivial examples W = (0) and W = V ; all others are
“proper” subspaces of V .

2.2. Definition. Given a non empty set S of vectors in V , its linear span ⟨S⟩ =
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K-span(S) is the smallest subspace W ⊆ V such that W contains S.

It is easy to verify that:

2.3. Exercise. If {Wα : α ∈ I} is any family of subspaces in V , prove that their
intersection W =

⋂

α∈I Wα is also a subspace.

Thus Definition 2.2 makes sense: Given S there is at least one subspace containing S,
namely V . If E = intersection of all subspace W that contain S, then E is a subspace
and is obviously the smallest subspace containing S. Thus K-span(S) exists, even if V
is “infinite dimensional,” for instance V = K[x].

This “top down” definition has its uses, but an equivalent “bottom-up” version is
often more informative.

2.4. Lemma. If S ̸= ∅ in V , its linear span K-span(S) is the set of finite sums

{

n
∑

i=1

aivi : ai ∈ K, vi ∈ S, n <∞

}

Proof: Let E = {
∑N

i=1 civi : N < ∞, ci ∈ K, vi ∈ S}. Since S ⊆ K-span(S), every
finite sum lies this span, proving E ⊆ K-span(S). For (⊇), it is clear that the family
E of finite linear combination is closed under (+) and (·) operations because a linear
combination of linear combinations is just one big linear combination of elements of S.
It is a subspace of V , and contains S because 1·s = s is a (trivial) linear combination. On
the other hand every subspace W ⊇ S must contain all these linear sums, so S ⊆ E ⊆W .
Hences E is the smallest subspace containing S and E = K-span(S). !

2.5. Exercise. If K = R, V = R3 show that W = {x ∈ R3 : 3x1 + 2x2 − x3 = 0} is a
subspace and W ′ = {x ∈ R3 : 3x1 + 2x2 − x3 = 1} is not a subspace.
Hint: For one thing the zero vector 0 = (0, 0, 0) is not in W ′. The situation is shown in
Figure 1.3.

Figure 1.3. The subspace W in Exercise 2.5 and a translate W ′ = x0 + W by some
x0 ∈ V such that 3x0

1
+ 2x0

2
− x0

3
= 1, for instance x0 = (0, 1, 1). The set W ′ is not a

subspace.

System of Linear Equations. Systems of n linear equations in m unknowns are
of two general types

Homogeneous
⎧

⎪

⎨

⎪

⎩

a11x1 + ... + a1mxm = 0
...

an1x1 + ... + anmxm = 0
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Inhomogeneous
⎧

⎪

⎨

⎪

⎩

a11x1 + ... + a1mxm = b1
...

an1x1 + ... + anmxm = bn

with aij and bk in K. !

2.6. Exercise. Verify that the solutions x = (x1, . . . , xm) of the homogeneous system
form a vector subspace of Km. Explain why the solution set of an inhomogeneous system
cannot be a vector subspace unless b = (b1, . . . , bn) = 0 in Kn.

If we regard vectors x = (x1, ..., xm) ∈ Km as the entries in an m× 1 column matrix,

x = col(x1, . . . , xm) =

⎛

⎜

⎝

x1
...

xm

⎞

⎟

⎠
,

you will recognize that the solutions x ∈ Km of the homogeneous system of equations
are precisely the solutions of the matrix equations

Ax = 0 where the zero vector is 0 =

⎛

⎜

⎝

0
...
0

⎞

⎟

⎠

n×1

and for inhomogeneous systems we must solve

Ax = B where B =

⎛

⎜

⎝

b1
...

bn

⎞

⎟

⎠

n×1

for B ∈ Kn.
The homogeneous system always has the zero vector 0 ∈ Km as a solution, and the

solution set {x ∈ Km : Ax = 0} is a vector subspace in Km. If K = R or C then the
number of solutions is either 1 or ∞ for this system. An inhomogeneous system might
not have any solutions at all; otherwise, it has just one solution or infinitely many.

If A is an n ×m matrix with entries in K we will find it useful to let A act by left
multiplication as an operator LA : Km → Kn on column vectors

y = LA(x) = A · x (an (n×m)·(m× 1) matrix product)

for x ∈ Km. This is a linear operator in the sense that

LA(x + y) = LA(x) + LA(y) and LA(λ · x) = λ · LA(x)

for x,y ∈ Km and λ ∈ K. Solving a system of linear equations is then equivalent to
finding solutions of LA(x) = 0 or LA(x) = B for x ∈ Km. From this point of view,
Ax = B has solutions if and only if B lies in the range R(LA) = {Ax : x ∈ Km} (a
vector subspace in Kn). If B = 0 the “homogeneous” equation Ax = 0 always has the
trivial solution x = 0. !

2.7. Exercise. If A is an n ×m matrix and LA; Km → Kn is defined as above, verify
that

1. The range R(LA) = LA(Km) = {A·x : x ∈ Km} is a vector subspace in Kn.
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2. The kernel K(LA) = ker(LA) = {x ∈ Km : LA(x) = A·x = 0 in Kn} is a vector
subspace in Km.

2.8. Example. Given a particular solution x0 of Ax = B, the full solution set of this
equation consists of the vectors WB = x0+W , where W = {x ∈ Km : Ax = 0} is a vector
subspace of Km because Ax1, Ax2 = 0 implies A(x1 +x2) = Ax1 +Ax2 = 0+0 = 0 and
A(λ · x) = λ · Ax = λ · 0 = 0.
Note: The converse is also true: in Km every vector subspace is the solution set of some
homogeneous system of linear equation Ax = 0, but we are not ready to prove that yet.
The situation is shown in Figure 1.4. !

Figure 1.4. The subspace W0 is the solution set for a homogeneous equation Ax = 0.
If the inhomogeneous equation Ax = y has solutions and if x0 is a particular solution, so
Ax0 = y, the full solution set W = {x : Ax = B} is the translate W ′ = x0 + W of W0.

This of course presumes that Ax = B has any solutions at all; if it does not, we say
that the system is inconsistent. Geometrically, that means B does not lie in the range
R(LA). Here is an example of an inconsistent inhomogeneous system.

(

1 0
2 0

)

x =

(

0
1

)

The corresponding system of linear equations
{

x1 + 0 · x2 = 0
2x1 + 0 · x2 = 1

implies that x1 = 0 and 2x1 = 1, an obvious impossibility.
We will continue discussion of linear systems and their solutions via elementary row

operations on A, or on the augmented matrix [A : B], but first a few more examples of
vector spaces we will encounter from time to time.

2.9. Example (Sequence Space ℓ∞). Let ℓ∞ = all sequences a = (a1, a2, ...) with
a + b = (a1 + b1, a2 + b2, ... ) and λ · a = (λa1, λa2, ...). This infinite dimensional space
has the following subspaces:

1. W0 = {sequences such that an → 0 as n→∞};

2. Wn = all sequences of the form (a1, ..., an, 0, 0, ...);

3. ℓ1 = { a :
∑∞

n=1 |an| <∞ }

2.10. Example. In M(n, K) we have various significant subspaces

1. Symmetric matrices: At = A where At = (transpose of A).
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2. Diagonal matrices: D =

0

B

B

B

B

@

d1 0
.

.

.

0 dn

1

C

C

C

C

A

3. Block diagonal matrices: Dm1 ,...,mr
=

0

B

B

B

B

B

@

Bm1×m1 0

.

.

.

0 Bmr×mr

1

C

C

C

C

C

A

for fixed indices m1, ..., mr ≥ 1. (The “blocks” are allowed to have arbitrary entries
and all other entries are zero; m1 + . . . + mr = n.)

4. Upper triangular and Strictly upper triangular matrices.
0

B

B

B

B

@

∗ ∗

.

.

.

0 ∗

1

C

C

C

C

A

and

0

B

B

B

B

@

0 ∗

.

.

.

0 0

1

C

C

C

C

A

2.11. Exercise. Which of these four subspaces, if any, are closed under matrix multi-
plication as well as (+) ?

2.12. Exercise. Show that the vector subspace of upper triangular and strictly upper
triangular matrices are closed under formation of matrix product AB.

2.13. Exercise. Show that the vector subspaces of upper triangular (or strictly up-
per triangular) matrices are Lie algebras: all commutators [A, B] = AB − BA are
(strictly) upper triangular if A, B are.

2.14. Exercise. If an n× n matrix A has the strictly upper triangular form shown in
(a), prove that A2 has the form in (b).

(a) A =

0

B

B

B

B

B

@

0 ∗ ∗

0 ∗ ∗

. . .

0 ∗

0 0

1

C

C

C

C

C

A

(b) A2 =

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

. . .
. . .

. . .
. . . ∗

0 0
0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

Note: Further computations show that A3 has three diagonal files of zeros, etc so that
A is a nilpotent operator, with An = 0n×n.

I.3. Determining Linear Span: A Case Study
Given vectors {v1, ..., vr} ⊆ V and b ∈ V , the basic problem is to decide whether there
exist x1, .., xr ∈ K such that b =

∑r
i=1 xivi (and if so, for which choices of coefficients

x1, .., xr). Row operations on matrices are the main tool for resolving such questions.

3.1. Example. Consider the vectors in K3

u1 =

⎛

⎝

1
2
1

⎞

⎠ , u2 =

⎛

⎝

−2
−4
−2

⎞

⎠ , u3 =

⎛

⎝

0
2
3

⎞

⎠ , u4 =

⎛

⎝

2
0
−3

⎞

⎠ , u5 =

⎛

⎝

−3
8
16

⎞

⎠
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and let A be the matrix with these vectors as its columns

A =

⎛

⎝

1 −2 0 2 −3
2 −4 2 0 8
1 −2 3 −3 16

⎞

⎠

If B = col(2, 6, 8) =

0

@

2
6
8

1

A, determine all column vectors

x =

0

B

B

B

B

@

x1

x2

x3

x4

x5

1

C

C

C

C

A

such that
∑

i xiui = 0 or
∑

i xiui = B in K3. (In the second case we are determining
whether B lies in the linear span of {u1, . . . ,u5}.) Then do this for an arbitrary column
vector B = col(b1, b2, b3) to to get all solutions of Ax = B.

Discussion: A solution x = col(x1, . . . , x5) of Ax = B statisfies the matrix equation

B =
5
∑

i=1

xiui = x1

⎛

⎝

1
2
1

⎞

⎠+ x2

⎛

⎝

−2
−4
−2

⎞

⎠+ x3

⎛

⎝

0
2
3

⎞

⎠+ x4

⎛

⎝

2
0
−3

⎞

⎠+ x5

⎛

⎝

−3
8
16

⎞

⎠

=

⎛

⎝

1 −2 0 2 −3
2 −4 2 0 8
1 −2 3 −3 16

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

x5

⎞

⎟

⎟

⎟

⎟

⎠

= Ax .

We shall determine the full solution sets of the systems Ax = 0 or Ax = B for the 3× 5
matrix A = [u1;u2;u3;u4;u5].

Before analyzing this problem we recall a few basic facts about solving matrix equa-
tions using elementary row operations. These methods are based on the following obser-
vations with which you should already be familiar: see the early chapters of Schaum’s
Outline. The simple (but important) verification is left as an exercise.

3.2. Proposition. The following elementary row operations on a matrix A do not
change the set of solutions x of Ax = 0.

1. Ri ↔ Rj : switch two rows;

2. Ri → λRi: scale (row i) by some λ ̸= 0 in K;

3. Ri → Ri + λRj : for i ̸= j add any scalar multiple of (row j) to (row i), leaving
(row j) unaltered.

Applied to the “augmented matrix” [A : B] associated with an inhomogeneous system
Ax = B, the system A′x = B′ associated with the modified matrix [A′ : B′] has the
same solution set as Ax = B.

The reason is that each of the moves 1.-3. is reversible, with Ri → Ri − λRj the
inverse of Ri → Ri + λRj . Although row operations do not change the solution set they
can greatly simplify the system of equations to be solved, leading to easy systematic
solution of matrix equations. For instance, when K = Q, R, C it is always possible to find
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a sequence of row operations that put A into upper triangular echelon form:

(1) Echelon Form: A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗
1 ∗ . . . . ∗

0 1 ∗ . . ∗

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The same moves put the augmented matrix [A : B] into similar form

(2) [A′ : B′] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗ b′1

1 ∗ . . . ∗
...

0 1 ∗ . . ∗ b′r

b′r+1

0
...

b′m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Solutions of the systems A′x = 0, A′x = B′ are quickly found by “backsolving” (illus-
trated bellow). One could go further, forcing A into even simpler form by knocking out
all terms ∗ above the “step corners.” These additional operations would of course affect
B′ in the augmented matrix yielding the reduced echelon form.

[A′′ : B′′] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . 0 ∗ 0 ∗ b′′1
1 ∗ 0 . . . ∗

0 1 ∗ . . ∗ b′′r

b′′r+1

0
...

b′′m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The “step corners” appearing in these echelon displays are often referred to as “pivots,”
and the columns in which they occur are the “pivot columns.”

Notice that Ax = B has the same solutions as A′x = B′ where [A′ : B′] is the echelon
form of [A : B]. Solutions exist if and only if we have b′r+1 = ... = b′n = 0 (the terms
in B′ below the row containing the last “step corner”) because the last equations in the
new linear system A′x = B′ read 0 = b′r+1, ..., 0 = b′n (the variables x1,..., xm don’t
appear!) These are inconsistent unless b′r+1 = ... = b′n = 0.

Columns Ci(A) that do not pass though a step corner correspond to “free variables”
xi in the solutions of the equation A′x = 0; they are also free variables in solutions of
A′x = B′ if the consistency conditions b′r+1 = ... = b′n = 0 have been met (without
which there are no solutions at all.) If I = {1 ≤ i1 < ... < ir ≤ m} are the indices
labeling the pivot columns, the remaining indices correspond to free variables xk (k /∈ I)
in the solution. Once the values of the free variables have been specified, backsolving
yields the values of the remaining “dependent” variables xk (k ∈ I). We get a unique
solution A′x = 0 for every choice of the free variables (k /∈ I); different choices yield
different solutions and all solutions are accounted for. By Proposition 3.2 these are also
the solutions of the original equation Ax = 0.

Example 3.1 (Resumed). Returning to our discussion, we put the original system
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into echelon form by applying row operations to
⎛

⎝

1 −2 0 2 −3 0
2 −4 2 0 8 0
1 −2 3 −3 16 0

⎞

⎠

Applying, R2 ← R2 − 2R1 and R3 ← R3 −R1 this becomes
⎛

⎝

1 −2 0 2 −3 0
0 0 2 −4 14 0
0 0 3 −5 19 0

⎞

⎠

Now apply R3 ← R3 −
3
2R2, R2 ←

1
2R2, and then R3 ← R3 − 3R2 to get

⎛

⎜

⎝

1 −2 0 2 −3 0

0 0 1 −2 7 0

0 0 0 1 −2 0

⎞

⎟

⎠

This is the desired echelon form. Some additional work, needless for most purposes,
would yield the reduced echelon form,

→

⎛

⎜

⎝

1 −2 0 0 ∗ 0

0 0 1 0 ∗ 0

0 0 0 1 −2 0

⎞

⎟

⎠

Recursively backsolving the corresponding system of linear equations, we see that

1. x2, x5 are free variables;

2. x4 − 2x5 = 0 ⇒ x4 = 2x5;

3. x3 − 2x4 + 7x5 = 0 ⇒ x3 = −7x5 + 2(2x5) = −3x5;

4. x1 − 2x2 + 2x4 − 3x5 = 0 ⇒ x1 = 2x2 − 2(2x5) + 3x5 = 2x2 − x5.

The solutions of A′x = 0 (which are also the solutions of Ax = 0) form a vector
subspace in K5, each of whose points is uniquely labeled (parametrized) by the choice of
the free variables x2, x5. Setting x2 = s, x5 = t (s, t ∈ K) we find that the solution set
W = {x ∈ K5 : Ax = 0} = {x ∈ K5 : A′x = 0} is equal to

W =

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

2s − t

s

−3t

2t

t

1

C

C

C

C

A

: s, t ∈ K

9

>

>

>

>

=

>

>

>

>

;

=

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

2x2 − x5

x2

−3x5

2x5

x5

1

C

C

C

C

A

: x2, x5 ∈ K

9

>

>

>

>

=

>

>

>

>

;

These homogeneous solutions can be rewritten in a more instructive form

x =

⎛

⎜

⎜

⎜

⎜

⎝

2s− t
s
−3t
2t
t

⎞

⎟

⎟

⎟

⎟

⎠

= s

⎛

⎜

⎜

⎜

⎜

⎝

2
1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

+ t

⎛

⎜

⎜

⎜

⎜

⎝

−1
0
−3
2
1

⎞

⎟

⎟

⎟

⎟

⎠

= sw1 + tw2 ,

which shows that every solution of Ax = 0 is a linear combination of two basic solutions

w1 =

⎛

⎜

⎜

⎜

⎜

⎝

2
1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

and w2 =

⎛

⎜

⎜

⎜

⎜

⎝

−1
0
−3
2
1

⎞

⎟

⎟

⎟

⎟

⎠
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This approach describes the solution set W of Ax = 0 as linear span K-span{w1,w2} of
a set of generators {w1,w2}. We will later observe that these vectors are a “basis” for
the solution set W .

Solving the Inhomogeneous Equation Ax = B. The same elementary row opera-
tions that put A into echelon form may be applied to the augmented matrix [A : B].
We already know what happens to A; applying the same moves to the column vector
B = col(b1, b2, b3) with undetermined coefficients, the operations R2 ← R2 − 2R1 and
R3 ← R3 −R1 transform

B =

⎛

⎝

b1

b2

b3

⎞

⎠ →

⎛

⎝

b1

b2 − 2b1

b3 − b1

⎞

⎠

Then R3 ← R3 −
3
2R2; R2 ←

1
2R2, and R3 ← R3 − 3R2 yield

→

⎛

⎜

⎝

b1
1
2b2 − b1

b3 − b1 −
3
2 (b2 − 2b1)

⎞

⎟

⎠
=

⎛

⎜

⎝

b1
1
2b2 − b1

b3 −
3
2b2 + 2b1

⎞

⎟

⎠

The augmented matrix becomes

[A : B]→

⎛

⎜

⎝

1 −2 0 2 −3 b1

0 0 1 −2 7 1
2 b2 − b1

0 0 0 1 −2 b3 −
3
2b2 + 2b1

⎞

⎟

⎠

Again x2 and x5 are free variables and the general solution x = col(x1, x2, x3, x4, x5) of
Ax = B can be found by backsolving. Since we have already found the general solutions
of Ax = 0, all we need is one particular solution xB . The simplest way to find one is to
set x2 = x5 = 0 and backsolve to get

x2, x5 = 0

x4 = b3 −
3
2b2 + 2b1

x3 − 2x4 = 1
2b2 − b1 ⇒ x3 = 2(b3 −

3
2b2 + 2b1) + 1

2b2 − b1 = 2b3 −
5
2b2 + 3b1

x1 − 2 · 0 + 0 + 2x4 + 0 = b1 ⇒ x1 = b1 − 2x4 = −2(b3 −
3
2b2 + 2b1) + b1 = −2b3 + 3b2 − 3b1.

So xB = col(−2b3+3b2−3b1, 0, 2b3−
5
2 b2 +3b1, b3−

3
2b2 +2b1, 0) is a particular solution

and the full solution set is

WB = {x : Ax = B} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2b3 + 3b2 − 3b1

0

2b3 −
5
2b2 + 3b1

b3 −
3
2b2 + 2b1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ Kw1 + Kw2

where w1 and w2 are the basis vectors for the space W = {x : Ax = 0} of homogeneous
solutions determined previously. Writing s = x2, t = x5 for the variable attached to w1,
w2 we obtain a parametric description of the solution set, with each point in WB tagged
by a unique pair (s, t) in the parameter space K2.

In the problem originally posed we had B = col(2, 6, 8). Then the particular solution
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is x0 = col(−4, 0, 7, 3, 0) and the solution set is

WB =

⎛

⎜

⎜

⎜

⎜

⎝

−4 + 2s− t
s

7− 3t
3 + 2t

t

⎞

⎟

⎟

⎟

⎟

⎠

= x0 + Kw1 + Kw2

That concludes our discussion of the Case Study 3.1. !

Further Remarks about Elementary Row Operations. Row operations can also
be used to determine the subspace spanned by any finite set of vectors in Km. If these
have the form R1 = (a11, .., a1m),..., Rn = (an1, ..., anm) we may regard them as the rows
of an n×m matrix

A =

⎛

⎜

⎜

⎜

⎜

⎝

R1

.

.

.
Rn

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

a11 . . . a1m

a21 . . . a2m

. .

. .
an1 . . . anm

⎞

⎟

⎟

⎟

⎟

⎠

The linear span Row(A) = K-span{R1, ..., Rn} ⊆ Km is called the row space of A; the
linear span of its columns C1, . . . , Cm is the column space Col(A) = K-span{C1, .., Cm}
in Kn. One can show that:

3.3. Lemma. Elementary row operations on a matrix A do not change the linear span
of its rows.

We leave the proof as a routine exercise. Note, however, that row operations will mess
up column space!

As for columns, there is an obvious family of elementary column operations on A.

1. Ci ↔ Ci;

2. Ci → λCi for λ ̸= 0 in K;

3. Ci → Ci + λCj , for i ̸= j where λ is any element in K.

These do not change the linear span Col(A). This can be verified by direct calculation,
but it also follows by observing that row and column operations are related via a natural
symmetry A 6→ At = the transpose of A, given by (At)ij = Aji (see Figure 1.5). Note
that (At)t = A.

Figure 1.5. A matrix A and its transpose At are related by a reflection that sends rows
in A to columns in At, and columns to rows.
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The transpose operation takes rows of A to columns of At and vice-versa; elementary
row operations on A become the corresponding elementary operations on the columns
of At. It should also be evident that under the transpose operation the row space
Row(A) = (span of the rows, regarded as vectors in Km) becomes the column space
Col(At) = (columns in At, regarded as vectors in Kn) of At. Invariance of Col(A) under
column operations follows from invariance of Row(At) under row operations, discussed
earlier.

3.4. Example. Let v1, .., vn ∈ Km. To find a basis for W = K-span{v1, .., vn}, view the
vi as 1×m row vectors and assemble them as the n×m matrix

A =

0

B

@

v1

...
vn

1

C

A

n×m

If we perform row operations to put A in echelon form, this does not change row space
Row(A) = K-span{v1, .., vn}, but it is now easy to pick out a minimal set of vectors with
the same linear span, namely the rows R′

1, ..., R′
k that meet the step corners in the array.

A′ =

R′
1

R′
2

.

.

.
R′

k

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗ ∗
. . .

...

1 ∗ ∗
0 1 ∗

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We will say more about this in the next section. !

3.5. Exercise. By invariance of row space Row(A) under row operations, the rows
R′

1, ..., R
′
k also span Row(A). They are a basis for row space if they are also linearly

independent in the following sense.

Linear Independence: If
∑k

i=1 ciR′
i = 0 in Km for coefficients c1, .., ck in

K, we must have c1 = ... = ck = 0 in K.

Explain why the row vectors R′
1,..., R′

k in the previous example must have this indepen-
dence property.
Hint: If

∑n
i=1 ciR′

i = (0, ..., 0) in Km, what conclusion can you draw about the first
coefficient c1? Etc.

A set of vectors {v1, ..., vn} ⊆ V is a basis for V if they span V and are linearly
independent. We will now show that this happens if and only if every v ∈ V has a
unique expansion v =

∑n
i=1 civi with ci ∈ K. Independence simply says that the zero

vector v = 0 in V has the unique expansion 0 = 0·v1 + .. + 0·vn. But if some vector had
two expansions v =

∑

i civi =
∑

i divi then 0 = v − v =
∑

(ci − di)vi, so independence
of the vi implies ci = di, and v has a unique expansion.

I.4. Linear Span, Independence and Bases
We now explain how to solve arbitrary systems of linear equations.

4.1. Definition. A set of vectors S = {v1, .., vr} in a vector space V spans a subspace
W if

W = K-span{S} = {
r
∑

i=1

civi : ci ∈ K}
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The vectors are linearly independent if the only linear combination
∑

i civi = 0 adding
up to zero in V is the trivial combination with c1 = ... = cr = 0. The vectors are a basis
for W if they span W and are independent, so every w ∈ W has a unique representation
as
∑n

i=1 λivi (λi ∈ K).

4.2. Exercise. If X = {v1, . . . , vn} span V and are independent, explain why every
v ∈ V has a unique representation as

∑n
i=1 λivi (λi ∈ K), so X is a basis for V .

The next result exhibits two ways to construct a basis in a vector space. One starts
with a spanning set and “prunes” it, deleting redundant vectors until we arrive at an
independent subset with the same span as the original vectors. This yields a basis for
V . The other constructs a basis recursively by adjoining “outside vectors” to an initial
family of independent vectors in V . The initial family might consist of a single nonzero
vector (obviously an independent set).

4.3. Proposition. Every finite spanning set {v1, ..., vn} in a vector space can be made
into a basis by deleting suitably chosen entries from the list.

Proof: We argue by induction on n = #(vectors in list). There is nothing to prove if
n = 1; then V = K · v1 and {v1} is already a basis. The induction hypotheses (one for
each index n = 1, 2, ....) are:

Hypothesis P (n): For any vector space V containing a spanning set of n
vectors, we can delete vectors from the list to get a basis for V .

We have proved this for n = 1. It is true for all n if we can prove P (n + 1) is true, using
only the information that P (n) is true – i.e. if we can verify that

P (n) true ⇒ P (n + 1) true

(Remember: This is a conditional statement owing to the presence of the word “If...”
It does not assert that P (n) is actually true.)

So, assuming P (n) true consider a spanning set X = {v1, ..., vn, vn+1} in V . If these
vectors are already independent (which could be checked using row operations if V =
Km), we already have a basis for V without deleting any vectors. If X is not independent
there must be coefficients c1, ..., cn+1 ∈ K (not all equal to 0) such that

∑n+1
i=1 civi = 0.

Relabeling, we may assume cn+1 ̸= 0, and then (K being a field)

−cn+1vn+1 =
n
∑

i=1

civi and vn+1 =
n
∑

i=1

−(ci/cn+1)·vi

Thus vn+1 ∈ K-span{v1, ..., vn} and K-span{v1, ..., vn+1} = K-span{v1, ..., vn} is all of V .
By the induction hypotheses we may thin out {v1, .., vn} to get a basis for V . !

4.4. Proposition. If {v1, ..., vn} are independent in a vector space V , and vn+1 is a
vector not in W0 = K-span{v1, ...., vn} then

1. {v1, ..., vn, vn+1} are independent;

2. W0
⊂
̸= W1 = K-span{v1, ..., vn, vn+1};

3. {v1, ..., vn, vn+1} is a basis for W1.

Proof: If v1 . . . , vn+1 are not independent there would be ci ∈ K (not all zero) such
that

∑n+1
i=1 civi = 0. We can’t have cn+1 = 0, otherwise

∑n
i=1 civi = 0 contrary to

assumed independence of {v1, ..., vn}. Thus vn+1 =
∑n

i=1−(ci/cn+1) · vi is in W0, which
contradicts the assumption vn+1 /∈ W0. Conclusion: v1, ...., vn+1 are independent. It
follows immediately that {v1, ..., vn+1} is a basis for W1 = K-span{v1, ..., vn+1}.
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Note: This is an example of a “proof by contradiction,” in which the assumption that
v1, ..., vn are not independent leads to an impossible conclusion. Therefore the statement
“v1, ..., vn are independent” must be true. !

Important Remark: This process of “adjoining an outside vector” can be iterated to
construct larger and larger independent sets and subspaces

W0 = K-span{v1, ..., vn}
⊂
̸= W1 = K-span{v1, ..., vn, vn+1}
⊂
̸= ....

⊂
̸= Wr = K-span{v1, ....., vn+r}

Since {v1, . . . , vn} are independent they are a basis for the initial space W0, and by
Lemma 4.4 v1, . . . , vn, . . . , vn+r will be a basis for Wr . If this process stops in finitely
many steps (because Wr = V and we can no longer find a vector outside Wr), we have
produced a basis for V . If the process never stops, no finite subset of vectors can span
V and in this case we say V is infinite dimensional. To begin the process we need
an initial set of independent vectors, but if V ̸= (0) we could start with any v1 ̸= 0 and
W0 = K·v1. Then apply Lemma 4.4 recursively as above. !

4.5. Definition. A vector space V is finite dimensional if there is a finite set of
vectors S = {v1, ..., vn} that span V . Otherwise V is said to be infinite dimensional,
which we indicate by writing dim(V ) =∞.

Coordinate space Kn and matrix spaces M(m × n, K) are finite dimensional; the spaces
of polynomials K[x] and K[x1, . . . , xn] are infinite dimensional.

4.6. Example. Coordinate space Kn is finite dimensional and is spanned by the stan-
dard basis vectors X = {e1, . . . , en}

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

In fact X is a basis for Kn.

Discussion: Obviously v = (a1, ..., an) = a1e1 + . . . + anen so the ei span Kn. But if
∑

i ciei = 0 = (0, ..., 0), that means (c1, ..., cn) = (0, ..., 0) and ci = 0 for all i. !

4.7. Example. Polynomial space K[x] is infinite dimensional. Given any finite set
of nonzero vectors X = {f1, ..., fr}, let di = deg(fi). All coefficients of fi are zero if
i > N = max{d1, ..., dr}, and the same is true for all linear combinations

∑r
i=1 cifi. But

then X cannot span K[x] because xN+1 is not in K-span{f1, ..., fr}.
Actually the vectors f0 = 1-, f1 = x, f2 = x2, ... are a basis for K[x]. This (infinite) set

of vectors clearly spans K[x], but it is also independent, for if
∑r

i=0 cifi = 0 that means
c0 + c1x + ... + crxr = 0 as a polynomial, so the symbol string (c0, ..., cr, 0, 0, ...) is equal
to (0, 0, 0, ....). !

4.8. Corollary. Every finite dimensional vector space has a basis.

Proof: If {v1, ..., vr} span V , hen by Proposition 4.3 we may delete some of the vectors
to get an independent set with the same linear span. !

4.9. Lemma. If S ⊆ V is an independent set of vectors in V and T a finite set of
vectors that span V , we can adjoin certain vectors from T to S to get a basis for V
containing the original set of independent vectors S.

Proof: Let W = K-span{S}. If W = V , S is already a basis. If W ̸= V , there exists
some v1 ∈ T such that v1 /∈ W and then S ∪ {v1} is an independent set, a basis for

the larger space W1 = K-span{S ∪ {v1}}
⊃
̸= W . Continuing, we get vectors v1, ..., vr in

T such that W
⊂
̸= W1

⊂
̸= W2

⊂
̸= ....

⊂
̸= Wr for 0 ≤ i ≤ r, where Wi = K-span{v1, ..., vi}.

The process must terminate when no vector vr+1 ∈ T can be found outside of Wr . Then
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T ⊆ Wr, so K-span{T } = V ⊆Wr and Wr = V . Therefore S ∪ {v1, ..., vr} is a basis for
V = Wr (and S ∪ {v1, ..., vk} is a basis for Wk for each 1 ≤ k ≤ r). !

4.10. Theorem (Dimension Defined). All bases in a finite dimensional vector space
have the same cardinality. More generally, if V is finite dimensional, and S is a finite
spanning set (with |S| = n), every independent set of vectors L ⊆ V has cardinality
|L| ≤ |S|. In other words, the size of any independent set is always less than or equal to
that of any spanning set.

Proof: We can eliminate vectors from S to get an independent spanning set S′ ⊆ S,
which is then a basis for V . We will show that |L| ≤ |S′| ≤ |S|. Let S′ = {u1, ..., un} and
L = {v1, ..., vm}. Every vi ∈ L can be written vi =

∑n
i=1 ajiuj since the ui ∈ S′ are a

basis for V . On the other hand, if c1, ..., cm are scalars such that 0 =
∑m

j=1 cjvj , we must

have c1 = ... = cm = 0 because the vj are independent. But the identity
∑m

j=1 cjvj = 0
can be written another way, as

0 =
m
∑

i=1

ci(
n
∑

j=1

ajiuj) =
n
∑

j=1

(
m
∑

i=1

ajici)uj

Since the uj ∈ S′ span V and are independent each expression (. . .) is = 0 so the
coefficients c1, ..., cm satisfy the system of n equations in m unknowns

(3)
m
∑

i=1

ajici = 0, for 1 ≤ j ≤ n

(a solution C = col(c1, . . . , cm) of the matrix equation AC = 0).
A linear system such as (3) always has nontrivial solutions if the number of unknowns

m = |L| exceeds the number of equations n = |S′|; it follows that |L| ≤ |S′|, as claimed.
In fact, row operations on the coefficient matrix A yield an echelon form shown below.
There are at most n step corners and if M > n there must be at least one column that
fails to meet one of these pivots.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗
. . . . . .
. . . . . .

1 ∗ . . . . ∗
0 1 ∗ . . ∗

0 . . . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×m

Hence there is at least one free variable and the system AC = 0 has nontrivial solutions.
But we showed above that C = 0 is the only solution, so we obtain a contradiction unless
|L| ≤ |S′| ≤ |S|. The theorem is proved. !

4.11. Corollary. In a finite dimensional vector space all bases have the same cardinal-
ity, which we refer to hereafter as the dimension dimK(V ).

Notation: We will often simplify notation when the underlying ground field K is un-
derstood, by writing dim(V ) or even |V | for the dimension of V . !

4.12. Example. We have already seen that dimK(Kn) = n, with the standard basis
vectors e1 = (1, 0, ..., 0), ..., en = (0, .., 0, 1). We may view Cn (or any vector space over
C) as a vector space over R by restricting scalars in λ · v to be real. As a vector space
over C we have dimC(V ) = n, but as a vector space over R we have dimR(V ) = 2n.
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Discussion: In fact, any v ∈ Cn can be written as a complex sum v =
∑n

j=1 zjej , and
if zj = xj + iyj we may write

v = x1e1 + . . . + xnen + y1(ie1) + . . . + yn(ien) with xi, yj ∈ R.

Thus the vectors {e1, ..., en, ie1, ..., ien} ⊆ Cn span Cn as a vector space over R. They
are also independent over R, for if

0 =
∑

ajej +
∑

bj(iej) =
∑

(aj + ibj)ej ,

we must have aj + ibj = 0 and aj = bj = 0 because {ej} is a basis over C. !

4.13. Exercise. If V is a finite dimensional vector space and W ⊆ V a subspace,
explain why W must also be finite dimensional.

4.14. Exercise. If V1, V2 are finite dimensional vector spaces prove that

1. If V1 ⊆ V2 then dim(V1) ≤ dim(V2);

2. If dim(V1) = dim(V2) and V1 ⊆ V2, then V1 = V2 as sets.

4.15. Exercise. Explain why W ⊆ V ⇒ dim(W ) ≤ dim(V ), even if one or both of
these spaces is infinite dimensional.

Describing Subspaces. How can a subspace W in a vector space be specified?
Every V of dimension n can be identified in a natural way with Kn once a basis {f1, ..., fn}
in V has been determined, so we may as well restrict attention to describing subspaces
W of coordinate space Kn. (Given a basis X = {fi} in V the map jX : Kn → V given by

x = (x1, ..., xn) 6→ jX(x) =
n
∑

i=1

xifi

is a bijection that respects all vector space operations in the sense that

jX(λ·x) = λ·jX(x) and jX(x + y) = jX(x) + jX(y)

It is an isomorphism between Kn and V , by which properties of one space can be matched
with those of the other.

Subspaces W ⊆ Kn can be described in two ways.

1. By exhibiting a basis X = {f1, ..., fr} in W , so W = K-span{X} and dimK(W ) = r.
This is a “parametric description” of W since each w ∈ W is labeled by a
coordinate r-tuple c = (c1, . . . , cr).

2. By finding a set of linear equations

a11x1 + ... + a1mxm = 0
...

...
an1x1 + ... + anmxm = 0

described by a matrix equation Ax = 0 (A = n×m, 0 = n× 1, x = m× 1) whose
solution set {x ∈ Km : Ax = 0} is equal to W . Such an “implicit description”
may include redundant equations. When there are no redundant equations we will
see that W = {x ∈ Kn : Ax = 0} has dimension m− n = dim(V )−#(equations).
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We illustrate this with some computational examples.

4.16. Example. Determine the dimension of the subspace W = R-span{u1,u2,u3} in
R3 if

u1 =

0

@

1
2
3

1

A u2 =

0

@

2
3
4

1

A u3 =

0

@

3
4
5

1

A

Find a basis for W . Then describe W as the solution set of a system of linear equations:

a11x1 + a12x2 + a13x3 = 0
...

...
an1x1 + an2x2 + an3x3 = 0

where x = (x1, x2, x3) ∈ R3.

Solution: We write the vectors as the rows of the 3× 3 matrix

A =

⎛

⎝

u1

u2

u3

⎞

⎠ =

⎛

⎝

1 2 3
2 3 4
3 4 5

⎞

⎠

Row space W = Row(A), the span of the rows, is unaffected by elementary row opera-
tions. These yield the echelon form

A→

⎛

⎝

1 2 3
0 −1 −2
0 −2 −4

⎞

⎠→

⎛

⎝

1 2 3

0 1 2
0 0 0

⎞

⎠

Therefore w1 = (1, 2, 3) and w2 = (0, 1, 2) span W ; they are also independent because
0 = c1w1 + c2w2 = (c1 , 2c1 + c2 , 3c1 + 2c2) implies

⎧

⎨

⎩

c1 = 0
2c1 + c2 = 0
3c1 + 2c2 = 0

⇒ c1 = c2 = c3 = 0 .

Thus {w1,w2} is a basis and dim(W ) = 2. A typical vector in W can be written
(uniquely) as

sw1 + tw2 = (s , 2s + t , 3s + 2t) = (x1, x2, x3) with s, t ∈ R

To describe W as the solution set of a system of equations in x1, x2, x3 we need to
“eliminate” s, t from this parametric description of W . This can be done by writing

⎧

⎨

⎩

x1 = s ⇒ s = x1

x2 = 2s + t ⇒ x2 = 2s + t = 2x1 + t⇒ t = x2 − 2x1

x3 = 3s + 2t

The last equation yields the “constraint” identity that determines W ,

x3 = 3s + 2t = 3x1 + 2(x2 − 2x1) = −x1 + x2

or x1−x2 + x3 = 0 (1 equation in 3 unknows). Thus W = {x ∈ R3 : x1− 2x2 + x3 = 0},
which has dimension dim(R3)− 1 = 2. !

4.17. Example. Let W ⊆ R4 be the solution set for the system of linear equations:
{

x1 + x2 − x3 + 2x4 = 0
3x1 − x2 + x4 = 0
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so Ax = 0 (x ∈ R4) where

A =

(

1 1 −1 2
3 −1 0 1

)

2×4

Find a basis for W and determine dimR(W ). Do the answers change if we replace R by
Q or C?

Solution: Elementary row operations yield

A→

(

1 1 −1 2
0 −4 3 −2

)

→

(

1 1 −1 2

0 1 −3
4

1
2

)

and for any solution of Ax = 0, x = col(x1, x2, x3, x4) has x3, x4 as free variables.
Backsolving yields the dependent variables

x2 = 3
4x3 −

1
2x4

x1 = −x2 + x3 − 2x4 = (−3
4x3 + 1

2x4) + x3 − 2x4 = 1
4x3 −

3
2x4

Thus solutions have the form

x =

0

B

B

B

B

@

1
4x3 −

3
2x4

3
4x3 −

1
2x4

x3

x4

1

C

C

C

C

A

= x3

0

B

B

B

B

@

1
4
3
4
1
0

1

C

C

C

C

A

+ x4

0

B

B

B

B

@

−
3
2

−
1
2

0
1

1

C

C

C

C

A

= x3f1 + x4f2

for every x3, x4 ∈ K. The solution set is equal to the R-span{(1, 3, 4, 0) , (3, 1, 0,−2)} =
R-span{f1, f2}. The vectors f1, f2 span the solution set W , but are also independent
because

c1(1, 3, 4, 0) + c2(3, 1, 0,−2) = (c1 + 3c2 , 3c1 + c2 , 4c1 , −2c2) = (0, 0, 0, 0)

implies that c1 = c2 = 0. Thus {f1, f2} is a basis and dimR(W ) = 2. The result is the
same if we replace the ground field R with Q or C. !

As a “rule of thumb,” each constraint equation ai1x1 + ... + aimxm = 0 on Km reduces
the dimension of the solution set W = {x ∈ Km : Ax = 0} by 1, but this is not always
the case.

4.18. Exercise. Consider the special case of one constraint equation

W = {x :
n
∑

i=1

cixi = 0} with c1, ..., cn ∈ K

1. Under what condition on {c1, ..., cn} do we have dimK(W ) = n− 1?

2. Explain why dim(W ) < n− 1 is impossible.

4.19. Exercise. Same question but now with two constraint equations
{

a11x1 + .... + a1mxm = 0
a21x1 + .... + a2mxm = 0

(or Ax = 0 with A = 2×m, x = m× 1, 0 = 2× 1.) Now what condition on A make

1. dimK(W ) = 0

2. dimK(W ) = 1,
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for the subspace W = {x ∈ K : Ax = 0 in K2}?

4.20. Example (Lagrange Interpolation Formula). For any infinite field such
as K = Q, R, C, the problem of finding a polynomial f ∈ K[x] having specified values
f(pj) = λj at a given set of distinct points p1, ..., pn in K always has a solution. The
solution is nonunique (the problem is underdetermined) unless we require that deg(f) =
n− 1; there may be no solution if deg(f) < n− 1.

Discussion: The product h(x) =
∏n

j=1(x − pj) has degree equal to n and is zero at
each pj (and zero nowhere else), so the solution to the interpolation problem cannot be
unique without restrictions on f(x): one can add h (or any scalar multiple thereof) to
any proposed solution f . It is reasonable to ask for a solution f(x) of minimal degree to
reduce the ambiguity. The polynomial

(4) f(x) =
n
∑

i=1

λi ·

∏

j ̸=i

(x − pj)

∏

j ̸=i

(pi − pj)

has nonzero denominator, is equal to λi at pi for each i, and has deg(f) = n− 1.
This is the Lagrange Interpolation Formula, determined by direct methods. It is

a bit complicated to rewrite this sum of products in the form f = c0+c1x+...+cn−1xn−1.
But the coefficients c0, . . . , cn−1 can also be found directly as the solution of a system of
linear equations

λj = f(pj) =
n−1
∑

k=0

pk
j ck for 1 ≤ j ≤ n− 1 ,

which is equivalent to the matrix equation Ac = λ in which

A =

⎛

⎜

⎜

⎜

⎜

⎝

p0
1 . . . pn−1

1

. .

. .

. .
p0

n . . . pn−1
n

⎞

⎟

⎟

⎟

⎟

⎠

n×n

and c =

⎛

⎜

⎜

⎜

⎜

⎝

c0

.

.

.
cn−1

⎞

⎟

⎟

⎟

⎟

⎠

n×1

λ =

⎛

⎜

⎜

⎜

⎜

⎝

λ0

.

.

.
λn−1

⎞

⎟

⎟

⎟

⎟

⎠

n×1

I.5 Quotient Spaces V/W.
If V is a vector space and W a subspace, the additive cosets of W are the translates
of W by various vectors in V . They are the subsets x + W = {x + w : w ∈ W} for
some x ∈ V , which we shall often denote by [x] when the subspace W is understood. In
particular, W itself is the “zero coset”: [0] = 0 + W = W . The key observation is that
the whole space V gets partitioned into disjoint cosets that fill V . The collection of all
cosets [x] is the quotient space V/W . Observe that points in the space V/W are at the
same time subsets in V .

5.1. Lemma. If W is a subspace in V and x, y ∈ V ,

1. Two cosets x + W and y + W either coincide or are disjoint, hence the distinct
cosets of W partition the space V .

2. An additive coset can have various representatives x ∈ V . We have y + W =
x + W ⇔ there is some w ∈W such that y = x + w (or y − x ∈ W ).

3. If y ∈ x + W then y + W = x + W .

Proof: We start with an observation about sums A + B = {a + b : a ∈ A, b ∈ B} of sets
A, B ⊆ V that will be invoked repeatedly in what follows.
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5.2. Exercise. If W is a subspace of a vector space V and w ∈W , prove that

1. w + W = W , for all w ∈ W ;

2. W + W = {w1 + w2 : w1, w2 ∈W} is equal to W ;

3. W −W = W .

Resuming the proof of Lemma 5.1, if cosets x+ W and y + W have a point p in common
there are w1, w2 ∈ W such that x + w1 = p = y + w2, hence y = x + (w1 − w2). By
Exercise 5.2 the cosets are equal:

y + W = (x + (w1 − w2)) + W = x + ((w1 − w2) + W ) = x + W

For (2.), x + W = y + W ⇒ y = y + 0 = x + w for some w ∈ W . Conversely, if
y = x + w for w ∈ W , then y + W = x + (w + W ) = x + W again by the Exercise. For
(3.), it follows from (1.) that y ∈ x + W ⇒ (y + W ) ∩ (x + W ) ̸= ∅ ⇒ y + W = x + W .

Figure 1.6. Additive cosets x+W of a subspace W are a family of parallel “hyperplanes”
in a vector space V . When V = R2 and W a line through the origin, all lines parallel
to W are cosets. Two vectors x,y in the same coset yield the same translate of W :
x + W = y + W because y − x is parallel to the subspace W .

As an example, if V = R2 and W = {(x, y) : x = y} the cosets of W are precisely the
distinct lines in the plane that make an angle of 45◦ with the positive x-axis. These lines
are the “points” in the quotient space V/W , see Figure 1.6.

5.3. Definition. There is a natural surjective quotient map π : V → V/W , such that

(5) π(x) = [x] = x + W

If C is a coset, any point v ∈ C such that C = [v] = v + W is called a representative
of the coset. Part (2.) of Lemma 5.1 tells us when two vectors x, y represent the same
coset.

Algebraic Structure in V/W . There are natural sum and scalar multiplication
operations in V/W , inherited from the overlying vector space V .

5.4. Definition. For any x, y ∈ V and λ ∈ K we define operations in V/W

1. Addition: [x]⊕ [y] = [x + y];

2. Scalar Multiplication: λ⊙ [x] = [λ·x]

To spell out what is involved, this definition tells us how to form the sum X ⊕ Y of two
cosets X, Y ∈ V/W via the following algorithm:

1. Pick representatives x, y ∈ V such that X = [x], Y = [y].
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2. Add the representatives to get x + y ∈ V .

3. Form the coset [x + y] = (x + y) + W and report the output: X ⊕ Y = [x + y]

But why should this make sense? The outcome depends on a choice of representatives for
each coset X, Y and if different choices yield different outputs, everything written above
is nonsense. Fortuately the outcome is independent of the choice of representatives and
the operation (⊕) is well-defined. In fact, if [x] = [x′] and [y] = [y′] there must exist
w1, w2 ∈ W such that x′ = x + w1, y′ = y + w2, and

[x′ + y′] = (x′ + y′) + W = (x + y) + ((w1 + w2) + W ) = (x + y) + W = [x + y]

Similarly, the scaling operation is well-defined: if [x′] = [x] we have x′ = x + w for some
w ∈W , and then

[λ·x′] = (λ·x′) + W = (λ·x) + (λw + W ) = (λ·x) + W = [λ·x]

Once we know the operations (⊕) and (⊙) make sense, direct calculations involving
representatives show that all vector space axioms are satisfied by the system (V/W,⊕,⊙).
For instance,

1. Associativity of ⊕ on V/W follows from associativity of (+) on V : since x+(y+z) =
(x + y) + z in V we get

[x]⊕ ([y]⊕ [z]) = [x]⊕ [y + z] = [x + (y + z)]

= [(x + y) + z] = [x + y]⊕ [z] = ([x]⊕ [y])⊕ [z]

2. The zero element is [0] = 0 + W = W because [0]⊕ [x] = [0 + x] = [x]

3. The additive inverse −[x] of [x] = x + W is [−x] = (−x) + W since [x] ⊕ [−x] =
[x + (−x)] = [0].

5.5. Exercise. Verify the remaining vector space axioms for (V/W,⊕,⊙). Then show
that the quotient map π : V → V/W with π(x) = [x] = x+W “intertwines” the algebraic
operations in (V, +, · ) with those in (V/W,⊕,⊙) in the sense that: for any v1, v2 ∈ V
and λ ∈ K we have

1. π(v1 + v2) = π(v1)⊕ π(v2)

2. π(λ · v1) = λ⊙ π(v1)

Thus π : V → V/W is a linear operator between these vector spaces. !

When W = (0) the quotient space consists of single points [v] = v + W = {v}, and V/W
has a natural identification with V under the quotient map which is now a bijection.
When W = V , there is just one coset, v + W = v + V = V ; the quotient space reduces
to a single point, the zero element [0] = 0 + V = V .

5.6. Exercise. Let V = R3 and W = {(x1, x2, x3) : x3 = 0} = the x, y-plane in 3-
dimensional space. The cosets in V/W are the distinct planes parallel to the x, y-plane:
if v = (v1, v2, v3) then

v + W = {v + w : w ∈ W}
= {(v1, v2, v3) + (w1, w2, 0) : w1, w2 ∈ R}
= {(v1 + s, v2 + t, v3) : s, t ∈ R}
= {(x1, x2, x3) : x1, x2 ∈ R, x3 = v3}

(the plane parallel to W passing through (0, 0, v3)). Each value of v3 ∈ R gives a different
coset.
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Figure 1.7. Additive cosets of W = {v ∈ R3 : v3 = 0} are planes parallel to W in R3. A
typical coset v0 + W is shown.

One important viewpoint is to think of the quotient map π : v → V/W as “erasing”
inessential aspects of the original vector space, retaining only those relevant to the prob-
lem at hand. Whole “bunches” of vectors in V , the cosets v+W , collapse to single points
in the target space V/W (the planes in the last example become points in V/W ). A lot
of detail is lost in this collapse, but if W is suitably chosen the quotient map space will
retain information that is buried in a lot of superfluous detail when we look at what is
happening in the larger space V . We will soon give many examples of this, once we start
looking at the structure of “linear operators” between vector spaces. For the moment we
assemble a few more basic facts about quotients of vector spaces.

5.7. Theorem (Dimension Theorem for Quotients). If V is finite dimensional
and W is a subspace. Then:

1. dim(V/W ) ≤ dim(V ) <∞;

2. dim(W ) ≤ dim(V ) <∞;

and

(6) dim(V ) = dim(W ) + dim(V/W )

By our notational conventions this identity can also be written in the abbreviated form
|V | = |W | + |V/W | .

Proof: The quotient map π : V → V/W preserves linear combinations in the sense that

π(
m
∑

i=1

λivi ) =
m
∑

i=1

λiπ(vi).

(recall Exercise 5.5), so if vectors {vi} span V their images vi = π(vi) span V/W . That
proves

dim(V/W ) ≤ #{vi} ≤ #{vi} = dim(V ) <∞

as claimed in (1.).
As for item (2.), we know dim(V ) < ∞ but have no a priori information about W ,

but we showed earlier that no independent set in V can have more than dim(V ) elements,
and a basis for W would be such a set.

The identity (6) is proved by constructing a basis in V/W aligned with a specially
chosen basis in V . Since dim(W ) <∞ there is a basis {w1, ..., wm} in W . If W = V then
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V/W is trivial and there is nothing more to do, but otherwise we can find an “outside
vector” vm+1 /∈ W such that the larger set {w1, ..., wm, vm+1} is independent, and hence
a basis for

W1 = K-span{w1, ..., wm, vm+1}
⊃
̸= W0 = W.

If W1 ̸= V , we can adjoin one more vector vm+2 /∈ W1 to get an independent set
{w1, ..., wm, vm+1, vm+2} with

W0
⊂
̸= W1

⊂
̸= W2 = K-span{w1, ...., wm, vm+1, vm+2}

This process must terminate, otherwise we would have arbitrary large independent sets in
the finite dimensional space V . When the construction terminates we get an independent
spanning set {w1, ..., wm, vm+1, ..., vm+k} in Wk = V . This is a basis for V so dim(V ) =
m + k = dim(W ) + k.

To conclude the proof we demonstrate that the k = dim(V/W ) by showing that the
π-images v̄m+1, . . . , v̄m+k ∈ V/W of the “outside vectors” are a basis for V/W . Since π
is surjective the images π(w1), . . . , π(vm+k) span V/W . But π “kills” all vectors in W ,
so

π(w1) = . . . = π(wm) = [0] in V/W ,

and the remaining images v̄k+i = π(vm+i) span V/W . They are also linearly independent.

In fact, if some linear combination
∑k

i=1 cm+iv̄m+i = [0] in V/W , then by linearity of
the quotient map π we get

[0] =
k
∑

j=1

cm+jπ(vm+j) = π(
k
∑

j=1

cm+jvm+j)

But π(v) = [0] for a vector v ∈ V ⇔ [v] = v + W is equal to the zero coset [0] = W .
Furthermore v + W = W ⇔ v ∈ W , so we can find coefficients c1, . . . , cm such that

m
∑

i=1

ciwi = v =
k
∑

j=1

cm+jvm+j

or

0 =
m
∑

i=1

ciwi +
k
∑

j=1

(−1)cm+jvm+j in V.

Since w1, . . . , wm, vm+1, . . . vm+k is a basis for V this can only happen if all coefficients in
this sum are zero, and in particular cm+1, . . . , cm+k = 0. Thus the {v̄i} are independent
and a basis for V/W , and dim(V/W ) = k = dim(V )− dim(W ). !

Remark: The construction developed in proving Theorem 5.7 shows how to find bases
in a quotient space V/W , and perform effective calculations with them. The key was to
find representatives vi back in V so we can transfer calculations involving cosets in V/W
to calculations in V involving actual vectors vi. The proof of Theorem 5.7 describes
an explicit procedure for finding independent vectors {vi} outside of W , whose images
π(vi) = vi are the desired basis in the quotient space.

5.8. Exercise. Find explicit bases for the following quotient spaces

1. V = R3, W = Re1 + Re2.

2. V = R3, W = R-span{w1 = (1, 2, 3),w2 = (0, 1,−1)};

3. V = C4, W = C-span{z1 = (1 , 1 + i , 3− 2i , −i), z2 = (4 − i , 0 , −1 , 1 + i)};
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4. V = R4, W = {x : x1 + x2 − x3 + x4 = 0 and 4x1 − 3x2 + 2x3 + x4 = 0}.

Here is a simple example involving bases in a quotient space V/W .

5.9. Example. Let V = R4 and W = {x ∈ R : 2x1 − x2 + x4 = 0}. The subspace W is
the solution set of the matrix equation

Ax = 0 where A = [ 2,−1, 0, 1 ]1×4

that imposes a single linear constraint on R4. Find a basis for V/W

Solution: Row operations yield

A→ A′ =
[

1 ,−1
2 , 0 , 1

2

]

The free variable are x2, x3, x4 and x1 = 1
2x2 −

1
2x4, so the solutions have the form

x =

⎛

⎜

⎜

⎝

1
2x2 −

1
2x4

x2

x3

x4

⎞

⎟

⎟

⎠

= x2

⎛

⎜

⎜

⎜

⎝

1
2

1
0
0

⎞

⎟

⎟

⎟

⎠

+ x3

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

+ x4

⎛

⎜

⎜

⎜

⎝

−1
2

0
0
1

⎞

⎟

⎟

⎟

⎠

for x2, x3, x4 ∈ R. Thus the solution set for Ax = 0 is the linear span of the column
vectors

u1 = col(1, 2, 0, 0) u2 = col(0, 0, 1, 0) u3 = col(−1, 0, 0, 2)

These are a basis for W since they are easily seen to be linearly independent. Just row
reduce the 3× 4 matrix M that has these vectors as its rows

M =

⎛

⎝

1 2 0 0
0 0 1 0
−1 0 0 2

⎞

⎠

and see if you get a row of zeros; you do not. Therefore dim(Row(M)) = 3 and the
vectors are independent.

Since dim(V ) = dim(W ) + dim(V/W ) and dim(W ) = 3, we need only find one
“outside” vector u4 /∈ W to complete a basis for V = R4; then π(u4) = u4 + W
will be nonzero, and a basis vector for the 1-dimensional quotient space. The vector
u4 = e4 = (0, 0, 0, 1) is not in W because it fails to satisfy the constraint equation
2x1−x2 +x4 = 0. Thus the single vector [e4] = π(e4) = e4 +W is a basis for V/W , and
dim(V/W ) = 1. !

5.10. Exercise (Another Dimension Formula). If E, F are subspaces in a finite-
dimensional vector space V and E + F = {e + f : e ∈ E, f ∈ F} is their linear span,
prove that

dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F )

Hint: Choose appropriate bases related to E, F and E ∩ F .
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Appendix A: The Degree Formula for K[x1, . . . xN ].

Let K[x] = K[x1, . . . , xN ] be the unital ring of polynomials with coefficients in an integral
domain. Using the multi-index notation introduced in Section 10.1 we can write any such
polynomial as a finite sum (finitely many nonzero coefficients)

(7) f(x) =
∑

α∈ZN
+

aα xα (xα = xα1

1 · . . . · xαN

N , cα ∈ R)

The degree of a monomial xα is |α| = α1 + . . . + αN and if f ∈ K[x] is not the zero
polynomial (all aα = 0) its degree is

m = deg(f) = max{ |α| : cα ̸= 0}

When N > 1 there may be several different monomials xα of the same total degree
|α| = m with nonzero coefficients.

Let f, g ̸= 0 in K[x] with degrees m = deg(f), n = deg(g). Their product is

(f ·g)(x) = (
∑

α

aα xα) · (
∑

β

bβ xβ) =
∑

α,β

aαbβ xα+β

=
∑

γ

(
∑

α+β=γ

aαbβ) xγ =
∑

γ

cγ xγ(8)

where α + β = (α1 + β1, . . . , αN + βn). If aαbβxα+β ̸= 0 in (36) we must have |α| ≤ m
and |β| ≤ n, so that |α + β| ≤ m + n; consequently deg(f ·g) ≤ deg(f) + deg(g).

Let us split off the monomials of maximum degree, writing

f(x) =
∑

|α|=m

aα xα + (· · · )

g(x) =
∑

|β|=n

bβ xβ + (· · · )

(f ·g)(x) =
∑

|γ|=m+n

cγ xγ + (· · · )

where (· · · ) are terms of lower degree. To prove the degree formula

(9) Degree Formula: deg(f ·g) = deg(f) + deg(g) for f, g ̸= 0 in K[x]

it suffice to show there is at least one monomial xγ0 of maximal degree m + n such that
the coefficient

(10) cγ0
=

∑

α+β=γ0

aαbβ is nonzero.

This is trivial for N = 1, but problematic when N ≥ 2 because this sum of products can
be zero if there is more than one term, even if the individual terms are nonzero. On the
other hand the degree formula (37) follows immediately if we can prove

(11)
There exists some monomial xγ of maximal degree m + n for which the sum
(38) consists of a single nonzero term.

The key to proving (39) is to introduce a ranking of the monomials xγ , γ ∈ ZN
+ , more

refined than ranking by total degree deg(xγ) = |γ|, which cannot distinguish between
the various monomials of the same degree. The tool for doing this is “lexicographic,”
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or “lexical,” ordering of the indices in ZN
+ , an idea that has proved useful in many parts

of mathematics.

A.1. Definition (Lexicographic Order). For α, β ∈ ZN
+ we define the relation α ≻ β

to mean

αi > βi at the first index i = 1, 2, . . . , N at which αi differs from βi

Thus

α1 = β1, . . . , αi−1 = βi−1 and αi > βi (other entries in α, β are irrelevant)

This is a linear ordering of multi-indices: given α, β exactly one of the possibilities

α ≻ β α = β β ≻ α

holds. We write α ≽ β when the possibility α = β is allowed. !

Obviously α = (0, . . . , 0) is the lowest multi-index in lexicographic order, and any finite
set of multi-indices has a unique highest element. Note carefully that α ≻ β does not
imply that |α| ≥ |β|. For instance we have

α = (1, 0, 0) ≻ β = (0, 2, 2) in lexicographic order, but |β| = 4 > |α| = 1 .

Other elementary properties of lexicographic order are easily verified once you understand
the definitions.

A.2. Exercise. For lexicographic order in ZN
+ verify that

1. Linear Ordering. For any pair α, β we have exactly one of the possibilities
α ≻ β, α = β, β ≻ α.

2. Transitivity of Order. If α ≻ β and β ≻ γ then α ≻ γ.

3. If α ≻ α′ then α + β ≻ α′ + β for all indices β.

4. If α ≻ α′ and β ≻ β′ then α + β ≻ α′ + β′.

Hint: It might help to make diagrams showing how the various N -tuples are related.
You will have to do some “casework” in (3.) !

We now outline how the crucial fact (39) might be proved, leaving the final details
as an exercise for the reader. If f ̸= 0 with m = deg(f), so f =

∑

|α|≤m aα xα, there
may be several monomials having maximal degree m with aα ̸= 0, but just one of these
is maximal with respect to lexicographic order, namely

α0 = max
≻

{α : |α| = m and aα ̸= 0}

Likewise there is a unique index

β0 = max
≻

{β : |β| = n and bβ ̸= 0}

The multi-index γ0 = α0 + β0 has |γ0| = m + n, and is a likely candidate for the solution
to (39); note that aα0

bβ0
̸= 0 by definition. We leave the reader to verify a few simple

properties of this particular multi-index.

A.3. Exercise. Explain why α0 = max
≻

{α : |α| = m and aα ̸= 0} might not be the

same as α′
0 = max

≻
{α : aα ̸= 0}. Is there any reason to expect α′

0 to have maximal degree
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|α′
0| = m? !

A.4. Exercise. In γ0 = α0 + β0 we have |α0| = m and |β0| = n, and aα0
bβ0
̸= 0, by

definition. If α, β are any indices such that

|α + β| = |α0 + β0| = m + n and aαbβ ̸= 0

prove that we must have |α| = |α0| = m and |β| = |β0| = n. !

Defining α0, β0, γ0 = α0 + β0 as above, we make the following claim:

(A.1)

Claim: If α + β = α0 + β0 and aαbβ ̸= 0 then α = α0 and β = β0. Hence
the sum

cγ0
=

∑

α+β=γ0

aαbβ

reduces to the single nonzero term aγ0
bβ0

A.5. Exercise. Prove the claim made in (A.1) using the facts assembled in the preceding
discussion. !

That will complete the proof of the Degree Formula.
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